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Abstract
The isochoric thermal conductivity of solid CO was investigated in three
samples of different densities in the interval from 35 K to the onset of melting.
In α-CO the temperature dependence of the isochoric thermal conductivity
is significantly weaker than � ∝ 1/T ; in β-CO it increases slightly with
temperature. A quantitative description of the experimental results is given
within the Debye model of thermal conductivity in the approximation of the
corresponding relaxation times and which allows for the fact that the mean-free
path of phonons cannot become smaller than half the phonon wavelength. On
this consideration the heat is transported by both phonons and ‘diffusive’ modes.

1. Introduction

The thermal and mechanical properties of simple molecular crystals are determined by both
translational and orientational motion of molecules in the lattice sites. The orientational
motion can be either oscillatory or rotational depending on the relation between the noncentral
force and the rotational kinetic energy. Except for rare cases (quantum crystals), the motion
of molecules at rather low temperatures is essentially oscillatory: at T ∼ 0 the molecules
execute zero orientational vibrations about equilibrium directions. As the temperature rises,
the root-mean-square (rms) amplitudes of the librations increase, and the molecules can jump
over some accessible orientations. In some cases this may lead to a phase transition when
the long-range orientational order disappears. By choosing crystals with different parameters
of molecular interaction and varying the temperature, it is possible to change the degree of
orientational ordering and investigate the effect of the molecule rotation upon the thermal
properties, e.g. thermal conductivity of the material.

Owing to their rather simple and largely similar physical properties, N2, CO, N2O and
CO2 crystals, consisting of linear molecules, are suitable objects for such studies [1, 2]. In
these crystals the noncentral part of the molecular interaction is determined mostly by the
quadrupole forces. At low temperatures and pressures, these crystals have an fcc structure
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with four molecules per unit cell. The axes of the molecules are along the body diagonals
of the cube. In N2 and CO2, which have equivalent diagonal directions, the space group is
Pa3: for the noncentrosymmetrical CO and N2O molecules the crystal symmetry is possibly
described by the group P213 [1].

In CO2 and N2O the noncentral interaction is very strong and the long-range order
persists up to their melting temperatures. In N2 and CO the barriers impeding the rotation
of the molecules are an order of magnitude lower: as a result, orientational disordering phase
transitions occur at 35.7 and 68.13 K, respectively. In the high-temperature phases, the N2 and
CO molecules occupy the sites of the hcp lattice of the space group P63/mmc.

For a correct comparison with theory, the thermal conductivity must be measured at
constant density to exclude the thermal expansion effect. This kind of investigation was made
on CO2, N2O [3] and on N2 [4]. In the orientationally ordered phases of these crystals the
thermal conductivity varied following a dependence significantly weaker than � ∝ 1/T . It was
shown that the departures occurred when the thermal conductivity was approaching its lower
limit, �min. The concept of the lower limit of thermal conductivity implies the following [5]:
�min is achieved when the heat transport proceeds as a diffusive exchange of thermal energy
between the neighbouring quantum mechanical oscillators whose lifetime is assumed to be
close to half the period of oscillations. In this case the lower limit of thermal conductivity �min

of the lattice can be written as [5]

�min =
(

π

6

)1/3

kB n2/3
∑

i

vi

{(
T

�i

)2 ∫ �i /T

0

x3ex

(ex − 1)2
dx

}
. (1)

The summation is made over three (two transverse and one longitudinal) oscillatory
modes having the sound velocities vi ; �i is the Debye temperature for each polarization:
�i = vi (h̄/kB) (6π2n)1/3, n is the number of molecules per unit volume, x = h̄ω/kBT . In
the orientationally disordered phase of N2 the isochoric thermal conductivity increased slightly
with temperature [4]. Such behaviour was attributed to the change in the ‘rotational’ component
of the total thermal resistance which decreased when the rotational correlations between the
neighbouring molecules grew weaker. However, no quantitative calculation was made.

This study completes the series of investigations of the heat transport in the N2-type
crystals. The isochoric thermal conductivity of solid CO was measured on three samples of
different densities in both orientationally ordered and orientationally disordered phases. Earlier,
the thermal conductivity of CO was investigated only under saturated vapour pressure in the
α-phase (2–50 K) [6, 7].

2. Experimental details

Constant volume investigations are possible for molecular solids having a comparatively high
compressibility coefficient. Using a high pressure cell, it is possible to grow a sample of
sufficient density which in subsequent experiments can be cooled with practically unchanged
volume. For samples of moderate densities the pressure drops during cooling to zero at a certain
characteristic temperature T0 and the isochoric condition is then broken. On further cooling,
the sample can separate from the walls of the cell or its continuity can be disturbed. In the case
of a fixed volume, melting occurs in a certain temperature interval, and its onset shifts towards
higher temperatures as the density of the samples increases.

This is seen, for example, in the V –T phase diagram (see figure 1) of CO based on
reference literature data [1, 2]. The curve describing the phase transitions was calculated
from the P–T phase diagram using averaged data (dP/dT )V = 3.0 MPa K−1 for the α-
phase and 2.3 MPa K−1 for the β-phase (the derivative of the ‘thermal’ pressure with respect
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Figure 1. V –T phase diagram of solid CO. The dashed lines show the molar volumes of the
samples.

to temperature (dP/dT )V = β/χT, where β is the thermal expansion coefficient, χT is the
isothermal compressibility). It was assumed that above T0 the ‘thermal’ pressure would grow
linearly up to crossing the temperature–pressure curve along the α–β transition Pα,β (T ); in
the two-phase region the ‘thermal’ pressure changes as Pα,β (T ). It is easy to show that the
temperature interval of the existence of the two-phase region 	Tb can be found as

	Tb = 	V f

V
χ−1

T

[(
dP

dT

)
f

−
(

dP

dT

)
V

]−1

(2)

where 	V f /V is the relative jump of the volume during the phase transition. The same
procedure was employed to find the boundaries of the β-phase. The molar volumes of the
samples plotted taking into account the thermal and elastic deformation of the measuring cell
are shown in figure 1 (dashed lines).

The investigation was made using a steady-state technique in a coaxial-geometry setup [8].
The measuring beryllium bronze cell was 160 mm long with an inner diameter of 17.6 mm. The
maximum permissible pressure in it was 800 MPa. The inner measuring cylinder was 10.2 mm
in diameter. The temperature sensors (platinum resistance thermometers) were placed in special
channels of the inner and outer cylinders and thus escaped high pressure effects. A system of
protecting cylinders was used to reduce the axial heat flows. During the growth process the
temperature gradient over the measuring cell was 2–3 K cm−1. The pressure in the inflow
capillary was varied within 50–250 MPa to grow samples of different densities. When the
growth was completed, the capillary was blocked by freezing it with liquid hydrogen, and the
samples were annealed for one to two hours at their premelting temperatures to remove the
density gradients. After measurements the samples were evaporated into a thin-walled vessel
and their masses were measured by weighing. The molar volumes of the samples were found
from the known volume of the measuring cell and the sample masses. The total dominant
systematic error of measurement was no more then 4% for the thermal conductivity and 0.2%
for the volume [8]. The purity of CO was no worse than 99.97%.

3. Results and discussion

The isochoric thermal conductivity of solid CO was investigated on three samples of different
densities in the interval from 35 K to the onset of melting. The experimental results are shown
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Figure 2. The isochoric thermal conductivity of three solid CO samples of different densities: 1 (×),
2 (◦), 3 (�) (see table 1). The solid lines show the smoothed values of the thermal conductivity.
The dashed lines indicate the boundaries of the two-phase α–β region. The arrows point to the onset
of the V = constant condition and the melting boundaries.

Table 1. Molar volumes Vm, temperatures T0 (onset of V = constant conditions), T b
α,β , T e

α,β

(beginning and end of α → β transition) and Tm (onset of melting).

Vm T0 T b
α,β T e

α,β Tm

Sample (cm3 mol−1) (K) (K) (K) (K)

1 29.15 61.5 61.5 65.0 92
2 28.50 55.0 64.0 68.0 96
3 27.98 44.0 65.5 70.0 102

in figure 2 (solid lines are smoothed thermal conductivity values). Our results obtained at
T � T0 correspond to the thermal conductivity at the equilibrium vapour pressure and agree
with literature data [6, 7] within experimental error.

The molar volumes Vm, temperatures T0 corresponding to the V = constant condition,
the temperatures T b

α,β , T e
α,β (the beginning and end of the α–β transition, respectively) and Tm

(onset of melting) are shown in table 1.
In α-CO the temperature dependence of the isochoric thermal conductivity is significantly

weaker than � ∝ 1/T and is similar to that observed for CO2, N2O and N2 [3, 4]. In β-CO the
isochoric thermal conductivity increases slightly with temperature, like in the case of N2 [4].
Earlier, the thermal conductivity was observed to grow in orientationally disordered phases of
some molecular crystals [9]. The Bridgman coefficient g = −(∂ ln �/∂ ln V )T calculated from
the experimental results is 5.2±0.5 for α-CO at T = 60 K and 4.0±0.5 for β-CO at T = 70 K.

The orientational motion of the molecules in α-CO manifests itself as large-angle librations
(the rms libration amplitudes are 〈�2〉1/2 = 14.6◦ at T = 0 and exceed 25◦ immediately
before the α–β transition). The librations are accompanied by hopping over a limited set of
equivalent orientations interrelated by the elements of the symmetry group [1]. The frequency
of reorientations obtained by extrapolating NMR [10] and dielectric permittivity [11] data is
about 6 × 1010 s−1 immediately before the α–β transition (compared to 1011 s−1 in N2) and it
is no more than 106 s−1 in CO2 and N2O before melting [1]. Structural methods cannot provide
unambiguous information about the character of orientational molecule rotation in β-N2 and
β-CO [1]. It is therefore hard to choose between the model of hindered rotation and the two
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models assuming partial orientational ordering: precession about the C6-axis in the hexagonal
lattice and hopping between the equivalent positions about this axis. The analysis of the heat
capacities of β-N2 and β-CO gives more information and reveals appreciable distinctions in
their behaviour [1]. The rotational heat capacity of β-CO decreases with rising temperature,
approaching asymptotically the value typical of a free rotator. In β-N2 the heat capacity changes
nonmonotonically. This behaviour corresponds conceptually to the β-phase of CO treated as
a system of hindered rotators. In β-N2 we most likely observe practically free precession of
the molecules which is accompanied by axial vibrations through an angle θ with respect to the
hexagonal axis of the cell [1].

Except for rare cases, the translational and orientational types of motion in molecular
crystals are not independent but occur as vibrations related by the translation–orientation
interaction [1]. It is impossible to describe this case with analytical expressions. Commonly, a
simplified notion is used, which suggests the possibility of describing the translational and
orientational subsystem independently. This approach is based on the assumption that the
translation–orientation (TO) interaction leads to renormalization of the dispersion relations for
rotational excitations and sound velocities [1]. In this case the thermal conductivity can be
described using the expression following from the Debye model [12, 13]

� = h̄2

2π2v2kBT 2

∫ ωD

0
l�(ω)ω4

exp
(

h̄ω
kBT

)
(
exp

(
h̄ω

kBT

) − 1
)2 dω (3)

where v is the sound velocity, ωD is the Debye frequency, ωD = v(6π2n)1/3, and l�(ω) is the
combined phonon mean free path determined by the package of all scattering mechanisms,

l�(ω) =
(∑

i

li (ω)−1

)−1

. (4)

In orientationally ordered phases of molecular crystals, the phonons participating in the
heat transport are scattered by both phonons and collective rotational excitations (librons). If
we reduce the factors of scattering to only three quasi-particles, the mean free path limited by
the Umklapp processes [13] can be found as

lu(ω) = v/Aω2T . (5)

The extra phonon scattering at librons leads to nothing but renormalization of the
coefficient A as compared to pure phonon–phonon scattering [14].

In orientationally disordered phases of molecular crystals there is no long-range order,
which suggests that the distinct pure libration modes cannot propagate in the crystal.
Nevertheless, the correlation effects are still strong immediately after the phase transition and
the short-range orientational order persists. In this region there is strong phonon scattering at
the short-range orientational order fluctuations and it becomes weaker on a further temperature
rise (the free molecule rotation does not lead to phonon scattering). The analytical expressions
describing the mean free paths determined by one- and two-phonon scattering were obtained in
the investigation of the thermal conductivity of solid methane [15]

lI(ω) = ρv5/B2�rotT ω2, (6a)

lII(ω) = πρ2v8/C2kBCrotT
2ω4, (6b)

where B and C are noncentral molecular interaction constants; �rot and Crot are the thermal
conductivity and the heat capacity of the rotational subsystem, respectively; ρ is the density.
It is assumed that B = C2 in the first approximation [15]. The coefficient B can be
roughly estimated from the dependence of the phase transition temperature upon pressure [15]:
B = −χ−1

T ∂(ln T f )/∂ P; it is equal to 1.3. The thermal conductivity of the rotational subsystem
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can be calculated from the known gas-kinetic expression: �rot = 1
3 Crota2τ−1, where τ is the

characteristic time of the site-to-site transport of the rotational energy and can be estimated as
a mean period of the librations in α-CO (we borrowed the value τ = 1.45 × 10−13 s). Taking
into account equations (4), (5), (6a) and (6b), the phonon mean free path in the orientationally
disordered phase can be written as

l�(ω) =
(

ATω2

v
+ B2�rotT ω2

ρv5
+ C2kBCrotT 2ω4

πρ2v8

)−1

. (7)

When the temperature rises, the phonon mean free path decreases and can become
comparable with the wavelength. There has been an extensive dispute about the character
of the heat transfer under these condition [5, 16–19]. According to the preferably accepted
standpoint, in this case the vibrational modes become ‘diffusive’, but the basic features of the
kinetic approach remain the same as they were viewed by Roufosse and Klemens [20] or by
Cahill et al [5]. Proceeding from [5] it is possible to assume that the total mean free path is
restricted to a distance close to half the phonon wavelength: αλ/2 = απv/ω, where α is a
numerical factor of the order of unity.

l(ω) =
{

l�(ω), 0 � ω � ω0,

απv/ω = α λ/2, ω0 < ω � ωD.
(8)

In this case the vibrational spectrum is subdivided into two parts presenting the modes
whose mean free paths are larger than αλ/2 (phonons) and the ‘diffusive’ modes whose mean
free paths reached αλ/2. In the orientationally ordered phases the ‘diffusivity’ edge ω0 can be
found from equations (5) and (8) as ω0 = 1/απ AT . In the orientationally disordered phases
ω0 follows from equations (7) and (8):

ω0 = − u

(−η + √
u3 + η2)1/3

+ (−η +
√

u3 + η2)1/3 (9)

where the parameters u and η are equal:

u = πρ2v7

3C2kBCrotT

(
A + B2�rot

ρv4

)
, η = − ρ2v7

2αC2kBCrotT 2
. (10)

The integral of thermal conductivity splits into two parts describing the contributions to
the thermal conductivity from the low-frequency phonon and the high-frequency ‘diffusive’
modes:

� = �ph + �dif (11)

where

�ph = h̄2

2π2v2kBT 2

∫ ω0

0
l�(ω)ω4

exp
(

h̄ω
kBT

)
(
exp

(
h̄ω

kB T

) − 1
)2

dω (12a)

�dif = αh̄2

2πvkBT 2

∫ ωD

ω0

ω3
exp

(
h̄ω

kB T

)
(
exp

(
h̄ω
kBT

) − 1
)2

dω. (12b)

The applicability of this description is supported by the straightforward calculations of
the thermal conductivity by the method of molecular dynamics using the Kubo–Greenwood
formula. Recently, the thermal conductivity of solid argon with the Lennard-Jones potential
has been described using two contributions made by low-frequency phonons with mean free
paths exceeding half the wavelength and high-frequency phonons with mean free path of about
half the wavelength [21].
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Figure 3. The ω0/ωD ratio upon temperature.

The lower limit of the thermal conductivity is reached when the mean free paths of all
the modes are αλ/2. It absolutely agrees with equation (1) if the polarization-averaged sound
velocity v = (vl + 2vt)/3 and α = 1 are used.

The results were computer-fitted by the least-square method to the smoothed values of the
thermal conductivity of the highest-density sample with Vm = 27.93 cm3 mol−1 individually
in the α- and β-phases. The polarization-averaged sound velocity corresponding to this density
was 1280 m s−1 [1, 2]. It was assumed that Crot varies linearly from the value 2R to R over
the β-phase [1]. The varied parameters were α and A in the α-phase and α, A and B in the
β-phase. The best agreement with the experimental results was achieved with α = 1.55 and
A = 4.3 × 10−16 s K−1 in the α-phase and with α = 1.25, A = 1.0 × 10−17 s K−1, B = 5.0
and C = 2.24 in the β-phase.

The derived ω0/ωD ratio is shown in figure 3. As the temperature rises, the ratio ω0/ωD

decreases in the α-phase and increases in the β-phase. This increase can be attributed to
decreasing of ‘rotational’ component of the total thermal resistance, which occurs as the
rotational correlations between the neighbouring molecules become weaker.

The curve fitted to the smoothed values the experimental thermal conductivity and the
contributions to the thermal conductivity from low-frequency phonons �ph and ‘diffusive’
modes �dif calculated by equations (12a) and (12b) are shown in figure 4. It is seen that near
T = 45 K most of the heat is transported by the phonons (the contribution of the ‘diffusive’
modes is no more than 10%). However, immediately before the α → β transition over half
of the heat is transported by the ‘diffusive’ modes. In the orientationally disordered phase
the contribution of the ‘diffusive’ modes immediately after phase transition is about two times
larger than that of the phonons. As the temperature rises, the contribution of the ‘diffusive’
modes decreases and that of the phonons increases because the scattering of the phonons by the
short-range orientational order fluctuations becomes weaker due to their attenuation damping.
Our estimates show that both three-phonon scattering and one-phonon scattering became the
dominant mechanisms. The dotted line in figure 4 describes the lower limit of the thermal
conductivity of the lattice �∗

min calculated assuming that all the modes are ‘diffusive’.
The parameters of the Debye model describing the thermal conductivity of the

orientationally ordered phases of CO2, N2O [3], N2 [4] and CO are given in table 2. The
computer-fitted lower limits of the thermal conductivity �∗

min are considerably higher than
those calculated according to Cahill and Pohl [5]. The discrepancy can be accounted for by
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Table 2. Parameters of the Debye model of thermal conductivity that used to describe the
experimental results for the orientationally ordered phase (see the equations).

Substance n × 10−22 cm−3 v × 10−3 m s−1 ωD × 10−13 s−1 A × 1016 s K−1 α

CO 2.15 1.28 1.38 4.3 1.55
N2 2.2 1.17 1.28 6.4 1.8
CO2 2.33 2.0 2.23 0.8 2.7
N2O 2.23 1.9 2.08 1.7 2.3

the imperfection of the model. Nevertheless, there is a certain correlation between α and the
number of the degree of freedom (three translational and z rotational degrees): α ∝ (3 + z)/3
for some van der Waals crystals [22] and this suggests the necessity of taking into account the
site-to-site transport of the rotational energy. The method of molecular dynamics calculation
of the thermal conductivity of small-pore Si-based crystals shows appreciable contributions of
‘diffusive’ optical modes to the total heat transport [23]. In CO and N2 the coefficient α is
considerably lower than that in CO2 and N2O. This can be because of the weaker noncentral
interaction in CO and N2 as compared to CO2 and N2O.

The dependence of the thermal conductivity on the molar volume can also be explained
within this model. The Bridgman coefficient g = −(∂ ln �/∂ ln V )T is the weighted mean
over the phonons and ‘diffusive’ modes whose volume dependence differ considerably [22]:

g = �ph

�
gph + �dif

�
gdif. (13)

Equation (13) describes the general tendency of the Bridgman coefficient to decrease as more
and more heat is transported by the ‘diffusive’ modes. The calculation using the procedure
of [22] and the average Grüneisen coefficient γ = 2.5 for α-phase and γ = 1.8 for the β-
phases [1, 2] gives g = 5.6 at T = 60 K and 4.3 at T = 70 K, which is in good agreement
with the experimental results.

4. Conclusions

The isochoric thermal conductivity of solid CO has been investigated on three samples of
different densities in the temperature interval from 35 K to the onset of melting. In α-CO the
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isochoric thermal conductivity varies following a dependence rather weaker than � ∝ 1/T . In
β-CO it increases slightly with temperature. On the whole, the isochoric thermal conductivity
of solid CO behaves similarly to that of solid N2 [4]. The experimental results can be described
within the Debye model of thermal conductivity in the approximation of the corresponding
relaxation times and which allows for the fact that the mean-free path of phonons cannot
become smaller than half the phonon wavelength. On this consideration the heat is transported
by both phonons and ‘diffusive’ modes.

The contribution of the ‘diffusive’ modes becomes obvious at temperatures above 40 K.
Immediately before the α → β transition over 50% of heat is transported by ‘diffusive’ modes.
In the β-phases of CO the contribution of the ‘diffusive’ modes is larger than that of the phonons
and it decreases with increasing temperature, whereas the phonon contribution increases. The
ratio ω0/ωD decreases in the α-phase and increases in the β-phase as the temperature rises.
This occurs because the phonon scattering becomes weaker as the short-range orientational
order fluctuations attenuate. The dependence of thermal conductivity upon density can also be
adequately described within this model.

References

[1] Manzhelii V G, Strzhemechny M A, Freiman Yu A, Erenburg A I and Slusarev V A (ed) 1996 Physics of
Cryocrystals (New York: AIP)

[2] Manzhelii V G, Prokhvatilov A I, Gavrilko V G and Isakina A P 1999 Structure and Thermodynamic Properties
of Cryocrystals (Handbook) (New York: Begell House)

[3] Konstantinov V A, Manzhelii V G and Smirnov S A 1988 Sov. J. Low Temp. Phys. 14 104
[4] Konstantinov V A, Manzhelii V G, Revyakin V P and Sagan V V 2005 Low Temp. Phys. 31 419
[5] Cahill D G, Watson S K and Pohl R O 1992 Phys. Rev. B 46 6131
[6] Koloskova L A, Krupskii I N, Manzhelii V G and Gorodilov B Ya 1973 Sov. Phys.—Solid State 15 1278
[7] Stachoviak P, Sumarokov V V, Mucha J and Jezowski A 1998 J. Low Temp. Phys. 111 379
[8] Konstantinov V A, Smirnov S A and Revyakin V P 1999 Instrum. Exp. Technol. 42 133
[9] Purskii O I, Zholonko N N and Konstantinov V A 2003 Low Temp. Phys. 29 567

[10] Walton J, Brookeman J and Rigamonti A 1983 Phys. Rev. B 28 4050
[11] Nary K R, Kuhns P L and Conradi M S 1982 Phys. Rev. B 26 3370
[12] Roufosse M and Klemens P G 1973 Phys. Rev. B 12 5379
[13] Berman R 1976 Thermal Conduction in Solids (Oxford: Clarendon)
[14] Manzhelii V G, Kokshenev V B, Koloskova L A and Krupskii I N 1975 Sov. J. Low Temp. Phys. 1 1302
[15] Krupskii I N, Koloskova L A and Manzhelii V G 1974 J. Low Temp. Phys. 14 403
[16] Auerbach A and Allen P B 1984 Phys. Rev. B 29 2884
[17] Allen P B and Feldman J L 1993 Phys. Rev. B 48 12581
[18] Feldman J L, Kluge M D and Allen P B 1993 Phys. Rev. B 48 12589
[19] Sheng P, Zhou M and Zhang Z Q 1994 Phys. Rev. Lett. 72 234
[20] Roufosse M C and Klemens P G 1974 J. Geophys. Res. 79 703
[21] McGaughey A J H and Kaviany M 2004 Heat Mass Transfer 47 1783
[22] Konstantinov V A 2003 Low Temp. Phys. 29 567
[23] McGaughey A J H and Kaviany M 2004 Heat Mass Transfer 47 1799

http://dx.doi.org/10.1063/1.1925369
http://dx.doi.org/10.1103/PhysRevB.46.6131
http://dx.doi.org/10.1023/A:1022291821092
http://dx.doi.org/10.1063/1.1614189
http://dx.doi.org/10.1103/PhysRevB.28.4050
http://dx.doi.org/10.1103/PhysRevB.26.3370
http://dx.doi.org/10.1103/PhysRevB.7.5379
http://dx.doi.org/10.1007/BF00655344
http://dx.doi.org/10.1103/PhysRevB.29.2884
http://dx.doi.org/10.1103/PhysRevB.48.12581
http://dx.doi.org/10.1103/PhysRevB.48.12589
http://dx.doi.org/10.1103/PhysRevLett.72.234
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.11.002
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.11.009

	1. Introduction
	2. Experimental details
	3. Results and discussion
	4. Conclusions
	References

